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Equitability, Interval Estimation, and
Statistical Power

Yakir A. Reshef', David N. Reshef', Pardis C. Sabeti? and Michael Mitzenmacher?

Abstract. Emerging high-dimensional data sets often contain many non-
trivial relationships, and, at modern sample sizes, screening these using an
independence test can sometimes yield too many relationships to be a use-
ful exploratory approach. We propose a framework to address this limitation
centered around a property of measures of dependence called equitability.
Given some measure of relationship strength, an equitable measure of de-
pendence is one that assigns similar scores to equally strong relationships of
different types. We formalize equitability within a semiparametric inferen-
tial framework in terms of interval estimates of relationship strength, and we
then use the correspondence of these interval estimates to hypothesis tests to
show that equitability is equivalent under moderate assumptions to requiring
that a measure of dependence yield well-powered tests not only for distin-
guishing nontrivial relationships from trivial ones but also for distinguishing
stronger relationships from weaker ones. We then show that equitability, to
the extent it is achieved, implies that a statistic will be well powered to detect
all relationships of a certain minimal strength, across different relationship
types in a family. Thus, equitability is a strengthening of power against inde-
pendence that enables exploration of data sets with a small number of strong,
interesting relationships and a large number of weaker, less interesting ones.
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1. INTRODUCTION

Suppose we have a data set that we would like to
explore to find associations of interest. A commonly
taken approach that makes minimal assumptions about
the structure in the data is to compute a measure of de-
pendence, that is, a statistic whose population value is
zero exactly in cases of statistical independence, on all
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possible pairs of variables. The score of each variable
pair can be evaluated against a null hypothesis of sta-
tistical independence, and variable pairs with significant
scores can be kept for follow-up (Storey and Tibshirani,
2003, Emilsson et al., 2008, Sun and Zhao, 2014, Rachel
Wang, Waterman and Huang, 2014). There is a wealth
of measures of dependence from which to choose for
this task (Hoeffding, 1948, Breiman and Friedman, 1985,
Kraskov, Stogbauer and Grassberger, 2004, Gretton et al.,
2005a, Székely, Rizzo and Bakirov, 2007, Székely and
Rizzo, 2009, Reshef et al., 2011, Gretton et al., 2012,
Heller, Heller and Gorfine, 2013, Sugiyama and Borg-
wardt, 2013, Heller et al., 2016, Lopez-Paz, Hennig and
Scholkopf, 2013, Rachel Wang, Waterman and Huang,
2014, Jiang, Ye and Liu, 2015, Reshef et al., 2016, Zhang,
2016, Wang, Jiang and Liu, 2017, Romano et al., 2018).
While this approach works well in some settings, it can
be limited by the size of modern data sets. In particular,
as data sets grow in dimensionality and sample size, the
above approach often results in lists of significant rela-
tionships that are too large to allow for meaningful follow-
up of every identified relationship, even after correction
for multiple hypothesis testing. For example, in the gene
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expression data set analyzed in Heller et al. (2016), sev-
eral measures of dependence reliably identified, at a false
discovery rate of 5%, thousands of significant relation-
ships amounting to between 65 and 75 percent of the vari-
able pairs in the data set. Given the extensive manual ef-
fort that is usually necessary to better understand each of
these results, further characterizing all of them is imprac-
tical.

A tempting way to deal with this challenge is to rank
all the variable pairs in a data set according to the test
statistic used (or according to p-value) and to examine
only a small number of pairs with the most extreme val-
ues (Faust and Raes, 2012, Turk-Browne, 2013). How-
ever, this idea has a pitfall: while a measure of depen-
dence guarantees nonzero scores to dependent variable
pairs, the magnitude of these nonzero scores can depend
heavily on the type of dependence in question, thereby
skewing the top of the list toward certain types of relation-
ships over others (Faust and Raes, 2012, Sun and Zhao,
2014). For example, if some measure of dependence ¢
systematically assigns higher scores to, say, linear rela-
tionships than to nonlinear relationships, then using ¢ to
rank variable pairs in a large data set could cause noisy
linear relationships in the data set to crowd out strong
nonlinear relationships from the top of the list. The nat-
ural result would be that the human examining the top-
ranked relationships would never see the nonlinear rela-
tionships, and they would not be discovered (Speed, 2011,
Sun and Zhao, 2014).

The consistency guarantee of measures of dependence
is therefore not strong enough to solve the data explo-
ration problem posed here. What is needed is a way not
just to identify as many relationships of different kinds as
possible in a data set, but also to identify a small number
of strongest relationships of different kinds.

Here we propose and formally characterize equitabil-
ity, a framework for meeting this goal. In previous work,
equitability was informally described as the extent to
which a measure of dependence assigns similar scores to
equally noisy relationships, regardless of relationship type
(Reshef et al., 2011). Given that this informal definition
has led to substantial follow-up work (Murrell, Murrell
and Murrell, 2016, Reshef et al., 2016, Ding et al., 2017,
Wang, Jiang and Liu, 2017, Romano et al., 2018), the con-
cept of equitability merits a unifying framework. In this
paper, we therefore formalize equitability in terms of in-
terval estimates of relationship strength and use the cor-
respondence between confidence intervals and hypothesis
tests to tie it to the notion of statistical power. Our for-
malization shows that equitability essentially amounts to
an assessment of the degree to which a measure of depen-
dence can be used to perform conservative semiparamet-
ric inference based on extremum quantiles. In this sense,
it is a natural application of ideas from statistical decision
theory to measures of dependence.

Intuitively, our proposal is simply to quantify the ex-
tent to which a measure of dependence can be used to
estimate an effect size rather than just to reject a null of
independence. More formally, given a measure of depen-
dence ¢, a benchmark set Q of relationship types, and
some quantification ® of relationship strength defined on
Q. we construct an interval estimate of the relationship
strength ® from the value of ¢ that is valid over Q. We
then use the sizes of these intervals to quantify the utility
of ¢ as an estimate of effect size on Q, and we define an
equitable statistic to be one that yields narrow interval es-
timates. As we explain, this property can be viewed as a
natural generalization of one of the “fundamental proper-
ties” described by Renyi in his framework for measures
of dependence (Rényi, 1959). It can also be viewed as a
weakening of the notion of consistency of an estimator.

After defining equitability, we connect it to statistical
power using a variation on the standard equivalence of
interval estimation and hypothesis testing. Specifically,
we show that under moderate assumptions an equitable
statistic is one that yields tests for distinguishing finely
between relationships of two different strengths that may
both be nontrivial. This result gives us a way to under-
stand equitability as a natural strengthening of the tradi-
tional requirement of power against independence, which
asks that a statistic be useful only for detecting devia-
tions from strict independence (i.e., distinguishing zero
relationship strength from nonzero relationship strength).
As we discuss, this view of equitability is related to
the concept of separation rate in the minimax hypoth-
esis testing literature (Baraud, 2002, Fromont, Lerasle
and Reynaud-Bouret, 2016, Arias-Castro, Pelletier and
Saligrama, 2018).

Finally, motivated by the connection between equitabil-
ity and power, we define an additional property, the de-
tection threshold of an independence test, which is the
minimal relationship strength x such that the test is well
powered to detect all relationships with strength at least
x at some fixed sample size, across different relation-
ship types in Q. This is analogous to the commonly
analyzed notion of testing rate (Ingster, 1987, Lepski
and Spokoiny, 1999, Baraud, 2002, Ingster and Suslina,
2003), which has been studied in detail for indepen-
dence testing both in the statistics literature (Ingster, 1989,
Yodé, 2011, Zhang, 2016) as well as the computer sci-
ence and information theory literature (Paninski, 2008,
Acharya, Daskalakis and Kamath, 2015). Traditionally,
testing rate for independence testing problems has been
defined in terms of some distance (usually total varia-
tion distance) between the alternatives in question and in-
dependence. Here we define the property generically in
terms of an arbitrary notion of relationship strength (e.g.,
R? of a noisy functional relationship) and show that high
equitability implies low detection threshold but that the
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converse does not hold. Therefore, when equitability is
too much to ask, low detection threshold on a broad set
of relationships with respect to an interesting measure of
relationship strength may be a reasonable surrogate goal.

As additional methods are developed around equitabil-
ity (Murrell, Murrell and Murrell, 2016, Reshef et al.,
2016, Ding et al., 2017, Wang, Jiang and Liu, 2017,
Romano et al., 2018), a framework for rigorously think-
ing about this property is becoming increasingly impor-
tant. The results we present here provide such a frame-
work, including language that is sufficiently general to
accommodate related ideas that have arisen in the liter-
ature. For example, the definitions provided here allow us
to precisely discuss the alternative definitions of Kinney
and Atwal (2014) and to explain the implications and lim-
itations of the results therein, as well as to crystallize and
conceptually discuss the power against independence of
equitable methods (Simon and Tibshirani, 2012).

Throughout this paper, we attempt whenever possible
to use terminology consistent with previously published
literature on equitability. However, given the extensive re-
lationship between ideas from semiparametric inference
and elements of the equitability framework, we point out
several cases in which similar or related ideas can be
rephrased in more standard statistical language. We also
give concrete examples of how our formalism relates to
the analysis of equitability in practice, and we close with
an example empirical analysis of the equitability of a few
popular measures of dependence. We emphasize, how-
ever, that much more extensive empirical analyses have
been conducted elsewhere (see Reshef et al., 2016, 2018),
and the analyses shown here are intended only to be illus-
trative.

2. DEFINING EQUITABILITY
2.1 Preliminaries

Suppose we are given a statistic ¢ taking values in [0, 1]
that is a measure of dependence. To formally define what
it means for ¢ to give similar scores to equally noisy re-
lationships of different types, we must specify which re-
lationships we are talking about. Therefore, we assume
that there is some set Q of distributions called standard
relationships, on which we have a well-defined notion of
relationship strength in the form of a scalar-valued func-
tional ® : @ — [0, 1] that we call the property of interest.
The idea is that Q contains relationships of many differ-
ent types, and for any distribution Z € Q, ®(2) is the
way we would ideally quantify the strength of Z if we
knew the distribution Z. Our goal is then to see, given a
sample Z of size n from Z, how well ¢(Z) can be used
to estimate @ (Z).

In standard statistical terminology, this is a semipara-
metric setup in which @ is a model, ® is simply a one-

dimensional parameter of interest, and all other param-
eters are nuisance parameters. We deviate from this ter-
minology here both for continuity with existing literature
and to emphasize the fact that ¢ is not simply an estimator
of @ but rather a measure of dependence whose utility as
a (potentially imperfect) estimator of & we wish to eval-
uate. This correspondence of terminology, along with a
summary of the other equitability-related terms defined in
this section, is listed following the definitions themselves,
at the end of Section 2.3.

We keep our exposition generic in order to accommo-
date variations—both existing (Kinney and Atwal, 2014,
Murrell, Murrell and Murrell, 2016, Ding et al., 2017,
Wang, Jiang and Liu, 2017) and potential—on the con-
cepts defined here. However, as a motivating example, we
often return to the setting in which Q is a set of noisy
functional relationships and @ is the coefficient of deter-
mination (R?) with respect to the generating function, that
is, the squared Pearson correlation between the dependent
variable and the generating function evaluated on the in-
dependent variable.

2.2 Q-Confidence Intervals

Our approach to defining equitability is to construct
from ¢ an interval estimate of ® by inverting a certain set
of hypothesis tests. The statistic ¢ will then be equitable
if it yields narrow interval estimates of ®. To construct
our interval estimates, we must first describe the accep-
tance regions of the hypothesis tests that we invert. We do
so using a standard construction of acceptance regions in
terms of quantiles of a statistic. (In this definition as well
as later definitions, we implicitly assume a fixed sample
size of n.)

DEFINITION 2.1 (Q-acceptance region). Let ¢ be a
statistic taking values in [0, 1], and let x, o € [0, 1]. The
level-a Q-acceptance region of ¢ at x, denoted by Ay (x),
is the closed interval [a, b] where a is the minimum «//2
quantile of ¢(Z) and b is the maximum 1 — «/2 quantile
of ¢(Z), with Z being a sample from some Z € Q and
the minimum and maximum taken over all Z satisfying
D(Z)=x.

See Figure 1(a) for an illustration. The Q-acceptance
region of ¢ at x is an acceptance region for one particular
test of the null hypothesis Hy : ®(Z) = x on relationships
in Q. We refer to it as a Q-acceptance region to empha-
size that, although the underlying statistic ¢ is a measure
of dependence that could be applied without assumptions
about the underlying data-generating process, the accep-
tance regions we describe are valid only on Q.

If there is only one Z € Q satisfying ®(Z) = x, the
Q-acceptance region amounts to a central interval of the
sampling distribution of ¢ on Z. If there is more than one
such Z, the acceptance region expands to include the rele-
vant central intervals of the sampling distributions of ¢ on
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all the distributions Z in question. For example, when Q
is a set of noisy functional relationships with several dif-
ferent function types and ® is R?, the Q-acceptance re-
gion at x is the smallest interval A such that for any func-
tional relationship Z € Q with R%(2) = x, ¢(Z) falls
in A with high probability over the sample Z of size n
from Z.

We can now construct interval estimates of ® in terms
of Ay (x) via the standard approach of inversion of hy-
pothesis tests (Casella and Berger, 2002).

DEFINITION 2.2 (Q-confidence interval). Let ¢ be a
statistic taking values in [0, 1], and let y, o € [0, 1]. The
(1 —«) Q-confidence interval of ¢ at y for ®, denoted by
1, (y), is the smallest closed interval containing the set

{x€[0,1]:y € Ag(x)},
where A, (+) denotes level-a Q-acceptance regions of ¢.

See Figure 1(a) for an illustration. The Q-confidence
interval is a conservative confidence interval for the pa-
rameter ®(Z) at ¢ = y induced by the extremum quan-
tiles of ¢. In other words, we have the following guar-
antee about the coverage probability of the Q-confidence
intervals, whose proof is given by the standard argument
about the relationship between quantiles and confidence
sets (Casella and Berger, 2002).

PROPOSITION 2.1. Let ¢ be a statistic taking values
in [0, 1], and let a« € [0, 1]. Forall Z € Q,

P(0(2) € 1o(§(2))) = 1 —a,
where Z is a sample of size n from Z.

The definitions just presented have natural nonstochas-
tic counterparts in the large-sample limit, which we defer
to Appendix A, that quantify the degree of nonidentifia-
bility induced by ¢ with respect to ® on Z independently
of any finite-sample effects. See Figure 1(b) for an illus-
tration.

FIG. 1. A schematic illustration of Q-acceptance regions and
Q-confidence intervals. In both figure parts, Q consists of noisy rela-
tionships of three different types depicted in the three different colors.
(a) The relationship between a statistic ¢ and ® on Q at a finite sam-
ple size. The bottom and top boundaries of each shaded region indicate
the (o /2) - 100% and (1 —«/2) - 100% percentiles of the sampling dis-
tribution of ¢ for each relationship type at various values of ®. The
vertical interval (in black) is the Q-acceptance region Ay (x), and the
horizontal interval (in red) is the Q-confidence interval Iy(y). (b) In
the large-sample limit, we replace § with a population quantity ¢.

2.3 Definition of Equitability via Q-Confidence
Intervals

Proposition 2.1 implies that if the Q-confidence inter-
vals of ¢ with respect to ® are small then ¢ will give
good interval estimates of &. There are many ways to
summarize whether the Q-confidence intervals of ¢ are
small; the traditional concept of equitability corresponds
to worst-case performance.

DEFINITION 2.3 (Equitability®). For 0 <d < 1, the
statistic ¢ is worst-case 1/d-equitable with respect to ®
on Q with confidence 1 — « if and only if the width of
1, (y) is at most d for all y.

Equitability of a measure of dependence ¢ therefore
simply amounts to a uniform bound on the length of a
certain set of confidence intervals constructed from ¢.
Widths of confidence intervals are commonly used to
measure accuracy in many inferential frameworks; Def-
inition 2.3 shows that equitability is a natural application
of this concept to a specific set of confidence intervals
constructed using a measure of dependence in a semi-
parametric scheme. We remark that, as in other settings,
one could imagine more fine-grained ways to use widths
of confidence intervals to quantify equitability according
to, for example, some weighting of the distributions in Q
that reflects a belief about the importance or prevalence
of various types of relationships; for simplicity, we do not
pursue this here.

The corresponding definition for equitability can be
made for ¢ in the large-sample limit as well (see Ap-
pendix A). In that setting, it is possible that all the Q-
confidence intervals of ¢ with respect to ® have size 0;
that is, the value of ¢(Z) uniquely determines the value
of ®(Z). The worst-case equitability of ¢ is then co, and
@ is said to be perfectly equitable.

We give a summary of equitability-related terms de-
fined in this section in Table 1.

2.4 Examples of- and Results About Equitability

We provide examples, using the vocabulary developed
here, of some concrete instantiations of- and results about
equitability. We begin with two examples of statistics that
are perfectly equitable in the large-sample limit. First, the
mutual information (Cover and Thomas, 2006, Csiszar,
2008) is perfectly equitable with respect to the correlation
,02 on the set @ of bivariate normal random variables.
This is because for bivariate normals, 1 — 272/ = ,02,
where I denotes mutual information (Linfoot, 1957). Ad-
ditionally, Theorem 6 of Székely and Rizzo (2009) shows

30ther literature on this topic occasionally uses the word “inter-
pretability” instead of “equitability” and “interpretable intervals” in-
stead of “Q-confidence intervals.” These can be considered synony-
mous.
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TABLE 1

A summary of equitability-related terminology. Equitability-related terms are listed on the left with summaries in standard statistical language on
the right

Term Corresponding statistical object

Set of standard relationships (Q)

A type of model consisting of a set of bivariate distributions on which we can define some

notion of relationship strength.

Property of interest ($)
relationships.
Measure of dependence (¢)

A parameter corresponding to the notion of relationship strength for our set of standard

A statistic whose population value is zero exactly under statistical independence, and

whose utility as an estimator of ® we wish to assess.

Q-acceptance region at x

The acceptance region for a specific test of Hy : & = x constructed using the measure of

dependence ¢ that is valid over Q.

Q-confidence interval at y

Equitability

The (conservative) confidence interval for ® at ¢ = y constructed via inversion of above
hypothesis tests.
The extent to which we have a uniform bound on widths of the above confidence intervals;

a tighter bound corresponds to higher equitability.

that for bivariate normals distance correlation is a deter-
ministic and monotonic function of p? as well. There-
fore, distance correlation is also perfectly equitable with
respect to p2 on the set of bivariate normals Q.

The perfect equitability with respect to p> on bivari-
ate normals exhibited in both of these examples is one
of the “fundamental properties” introduced by Renyi in
his framework for thinking about ideal properties of mea-
sures of dependence (Rényi, 1959). This property con-
tains a compromise: it guarantees equitability that on the
one hand is perfect, but on the other hand applies only on
a relatively small set of standard relationships. One goal
of equitability is to give us the tools to relax the “per-
fect” requirement in exchange for the ability to make Q a
larger set, for example, a set of noisy functional relation-
ships. Thus, equitability can be viewed as a generalization
of Renyi’s requirement that allows for a tradeoff between
the precision with which our statistic tells us about ® and
the set @ on which it does so.

Renyi’s framework of desiderata for measures of de-
pendence has inspired much follow-up work over the
years. For example, Schweizer and Wolff (1981) modi-
fied them by weakening several of the invariance require-
ments and adding a continuity requirement that was satis-
fied by copula measures. Gretton et al. (2005b) proposed
removing the requirement of perfect scores if and only
if one variable is a function of the other. Reimherr and
Nicolae (2013) proposed a reduced set of axioms focused
only on existence, range, and interpretability that allowed
for more flexibility in construction of measures of de-
pendence tailored to different areas of application. Méri
and Székely (2019) proposed four axioms that empha-
sized continuity and affine invariance rather than invari-
ance relative to all one-to-one functions of the real line.
Our work fits into this continuing conversation about how
Renyi’s desiderate should be modified, in our case mo-
tivated by the different instances of the data exploration

problem that arise in different fields, each of which may
require a different notion of relationship strength but all
of which require not just detection but also ranking of re-
lationships of many different kinds.

We next give some examples of—and results about—
equitability on noisy functional relationships, as defined
below.

DEFINITION 2.4 (Noisy functional relationship).
A random variable distributed over R? is called a noisy
functional relationship if and only if it can be written in
the form (X + ¢, f(X) + &’) where f:[0,1] > R, X is
a random variable distributed over [0, 1], and ¢ and ¢’ are
(possibly trivial) random variables independent of each
other and of X.

A natural version of equitability to apply to sets of noisy
functional relationships is equitability with respect to R?.
Of course, this definition depends on the set Q@ in ques-
tion. The general approach taken in the literature thus far
has been to either (a) fix a set of functions that on the
one hand is large enough to be representative of rela-
tionships encountered in real data sets and on the other
hand is small enough to enable empirical analysis (see,
e.g., Reshef et al., 2011, 2018, Kinney and Atwal, 2014,
Wang, Jiang and Liu, 2017), as is done when assessing
power against independence (see, e.g., Simon and Tibshi-
rani, 2012, Jiang, Ye and Liu, 2015, Heller et al., 2016),
or (b) to analyze random sets of relationships drawn from
a distribution such as a Gaussian process (Reshef et al.,
2016).

As important as the choice of functions to analyze is
the choice of marginal distributions and noise model. In
past work, we and others have considered several possi-
bilities. The simplest is X ~ Unif, ¢’ ~ N (0, o) with o
varying, and ¢ = 0. Slightly more complex noise mod-
els include having ¢ and &’ be i.i.d. Gaussians, or having
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¢ be Gaussian and &’ = 0. More complex marginal dis-
tributions include having X be distributed in a way that
depends on the graph of f, or having it be nonstochas-
tic (Reshef et al., 2011, 2018). Given that we often lack a
neat description of the noise or sampling patterns of real
data sets, we would ideally like a statistic to be highly eq-
uitable on as many different models as possible, and our
formalism is designed to be flexible enough to express
this.

The larger a noise model is, the harder equitability is
to achieve; that is, just as the setting described above in
which @ is the set of bivariate Gaussians is “too easy,”
there are settings in which Q is so large that equitability
is “too hard.” This is illustrated by the fact that an impos-
sibility result is known for the following set of relation-
ships, introduced in Kinney and Atwal (2014):

Ok ={(X, f(X)+n)| f:[0,1]1— [0, 1],
(LX) f(X)}

with n representing a random variable that is condition-
ally independent of X given f(X). This model describes
relationships with noise in the second coordinate only,
where that noise can depend arbitrarily on the value of
f(X) but must be otherwise independent of X.

Kinney and Atwal prove that no nontrivial measure of
dependence can be perfectly worst-case equitable with re-
spect to R? on the set Q. We note two important limi-
tations of this interesting result, however. The first limi-
tation, pointed out in the technical comment of Murrell,
Murrell and Murrell (2014), is that Qg is extremely per-
missive (i.e., large): in particular, the fact that the noise
term 1 can depend arbitrarily on the value of f(X) leads
to identifiability issues such as obtaining the noiseless re-
lationship f(X) =X Zasa noisy version of f(X) = X.
Additionally, since Qg is not contained in the other
major models considered in, for example, Reshef et al.
(2011, 2018), this impossibility result does not imply im-
possibility for any of those models (Reshef et al., 2014).

An additional limitation of Kinney and Atwal’s result
is that it only addresses perfect equitability rather than
the more general, approximate notion with which we are
primarily concerned. While a statistic that is perfectly eq-
uitable with respect to R may indeed be difficult or even
impossible to achieve for many large models Q, such im-
possibility would make approximate equitability no less
desirable a property. The question thus remains how equi-
table various measures are, both provably and empirically.

As suggested by the above discussion, the appropriate
definitions of @ and & may change from application to
application. For instance, rather than using R? as the prop-
erty of interest, one may decide to focus on the discrep-
ancy between the noisy y-values and the corresponding
de-noised y-values captured by ¢ itself, as in the follow-
ing instantiation of perfect equitability defined in Kinney
and Atwal (2014):

DEFINITION 2.5 (Self-equitability (Kinney and Atwal,
2014)%). A functional ¢ is self-equitable if and only if it
is symmetric and perfectly equitable on Qg with respect

to ®(X, f(x) +n) =(f(X), f(X)+n).

A second possibility is that we might focus on the frac-
tion of deterministic signal in a mixture, as in the follow-
ing type of equitability, defined in Ding et al. (2017):

DEFINITION 2.6 (Robust equitability (Ding et al.,
2017)). Let Q be the set of all distributions whose cop-
ula is of the form pCy + (1 — p)II for some 0 < p <1,
where IT is the independence copula IT(u, v) = uv and
C; is a singular copula. A measure of dependence ¢ is
robust-equitable if it is equitable on Q with respect to
@ (pCs + (1 — p)I1) = p.

Proving further relationships among these different
instantiations of equitability remains an open problem.
There are also yet-undefined instantiations that may prove
useful if formalized, such as for relationships supported
on one-manifolds with additive noise rather than convo-
lution with the independence copula or perhaps even re-
lationships supported on subsets of cells of a predefined
grid (Zhang, 2016). In constructing new instantiations, the
overarching goal is to have Q be as large as possible with-
out making it impossible to define a & that is appropriate
to the question at hand and for which good equitability is
achievable.

We emphasize that, although the above discussion con-
siders primarily noisy functional relationships as a sim-
ple and illustrative example, nonfunctional relationships
can be easily accommodated in our framework, as Def-
inition 2.6 illustrates. For example, one could imagine
augmenting the definition of equitability on noisy func-
tional relationships to also require that asymptotically per-
fect scores be assigned to any union of a finite number of
noiseless functional relationships. This would encode, for
instance, the intuition that a relationship supported on a
noiseless circle is highly interesting and should be dis-
covered. Therefore, while here we focus primarily on the
example of noisy functional relationships to elucidate the
principles of equitability, noisy functional relationships
are not the sole goal of work aimed at achieving equi-
tability.

2.5 Quantifying Equitability: An Example

The formalism above can be used to empirically quan-
tify equitability with respect to R% on a specific set of

4There is an abuse of notation here because of the identifiability is-

sues with Qg discussed above; for example, f(X) = X2 can be a
noisy version of f(X) = X. Since there can be two identical distribu-
tions Z € Q corresponding to different functions f, a formal defini-
tion would require information about f to be embedded into Q. If n
were restricted to be, for example, mean-zero noise, this modification
would not be necessary.
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noisy functional relationships. To demonstrate this, we
take as an example statistic the sample correlation 6. This
statistic is of course not a measure of dependence, since its
population value can be zero for relationships with non-
trivial dependence. We analyze it here solely as an instruc-
tional example since it is widely used and behaves intu-
itively; we provide illustrative analyses of true measures
of dependence in Section 5, and refer the reader to Reshef
et al. (2016, 2018) for more thorough empirical work on
this topic.

Figure 2(a) shows an analysis of the equitability with
respect to RZ of p at a sample size of n = 500 on the set

Q={(X, f(X)+¢): X ~Unif, &, ~N(0,0?),
f (S F,U ERZO}s

where F is a set of 16 functions analyzed in Reshef et al.
(2018). (See Appendix C for details.)

As expected, the Q-confidence intervals at many val-
ues of p are large. This is because our set of functions F
contains many nonlinear functions, and so a given value
of p can be assigned to relationships of different types
with very different R? values. This is shown by the pairs
of thumbnails in the figure, each of which depicts two re-
lationships with the same p but different values of R
Thus, the analysis confirms that the preference of p for
linear relationships leads it to have poor equitability with
respect to R? on this set Q, which contains many nonlin-
ear relationships. In contrast, Figure 2(b) depicts the way
this analysis would look for a hypothetical measure of de-
pendence with perfect equitability: all the Q-confidence
intervals would have size 0.

2.6 When Is Equitability Useful?

When Q is so small that there is only one distribution
corresponding to every value of ®, equitability becomes
a less rich property. This is because asymptotic mono-
tonicity of ¢ with respect to ® is sufficient for perfect
equitability in the large-sample limit. In such a scenario,
the only obstacle to the equitability of ¢ is finite-sample
effects. For example, on the set @ of bivariate Gaus-
sians, many measures of dependence are asymptotically
perfectly equitable with respect to the correlation.

However, this differs from the motivating data explo-
ration scenario we consider, in which Q contains many
different relationship types and there are multiple differ-
ent relationships corresponding to a given value of &.
Here, equitability can be hindered either by finite-sample
effects, or by the differences in the asymptotic behavior
of ¢ on different relationship types in Q.

Regardless of the size of Q though, equitability is fun-
damentally meant to be applied to measures of depen-
dence rather than to bespoke estimators of various quan-
tities ®. (In fact, if ¢ is a consistent estimator of ® on
Q, it is trivially asymptotically perfectly equitable.) This

is because in data exploration we typically require that ¢
be a measure of dependence in order to obtain a mini-
mal guarantee about not missing relationships of unantic-
ipated types, and this requirement typically conflicts with
the goal of making ¢ a consistent estimator of ® on a large
set Q. For instance, if Q is a set of noisy functional re-
lationships and ® is R?, then on the one hand computing
the sample R? with respect to a nonparametric estimate of
the regression function will be a consistent estimator of ®
but will miss other interesting relationships that happen
to be nonfunctional (e.g., it would give a score of O to a
circle). And on the other hand, no measure of dependence
is known also to be a consistent estimator of R* on noisy
functional relationships.

In a setting such as this, it is reasonable to seek the next-
best thing: a measure of dependence ¢ whose values have
an approximate interpretation in terms of R”. Equitability
supplies us with a way of talking about how well ¢ does
in this regard. In this sense, equitability can be viewed as
a weakening of the requirement of consistency: a statis-
tic can, for example, be asymptotically 1/d-equitable for
some d > 0 without being asymptotically perfectly eq-
uitable. That is, although the statistic is not a consistent
estimator of @, it still has the property that its population
value gives us information about the value of ® to within
an accuracy of d.

3. EQUITABILITY AND STATISTICAL POWER

3.1 Intuition for Connection Between Equitability and
Power

Given our construction of Q-confidence intervals via
the standard technique of inversion of a set of hypothesis
tests, it is natural to ask whether there is any connection
between equitability and the power of those tests with re-
spect to specific alternatives. We answer this question by
showing that equitability can be equivalently formulated
in terms of power with respect to a family of null hy-
potheses corresponding to different relationship strengths.
This result recasts equitability as a strengthening of power
against statistical independence on @ and gives a second
formal definition of equitability that is easily quantifiable
using standard power analysis.

Before stating the formal relationship between equi-
tability and power, let us first state intuitively why it
should hold. Recall that the Q-acceptance region A (xg)
is an acceptance region of a two-sided level-o test of
Hy : ®(2) = x¢. Focusing for intuition on xg = 0, we
can ask: what is the minimal x; > O such that a right-
tailed level-« test of Hp : ® = 0 will have power at least
1 — B on Hy: & =x1? As shown graphically in Figure 3,
in which max A4 (+) is an increasing function (and o = 8
for simplicity), the answer can in some cases be stated in
terms of the Q-acceptance regions and the Q-confidence
intervals of ¢.
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FI1G. 2.  Examples of equitable and nonequitable behavior on a set of noisy functional relationships. (a) The equitability with respect to R? of the
Pearson correlation coefficient p over the set Q of relationships described in Section 2.5, with n = 500. Each shaded region is an estimated 90%
central interval of the sampling distribution of p for a given relationship at a given R2. The pairs of thumbnails show relationships with the same p
but different R? values. The largest Q-confidence interval is indicated by a red line. The worst-case and average-case widths of the Q-confidence
intervals are given numerically in the top-left of the plot. (b) A hypothetical population quantity ¢ that achieves the ideal of perfect equitability in
the large-sample limit (i.e., the lines corresponding to different relationship types are exactly coincident). This ideal is an illustrative theoretical
idea but is not attainable in practice in most interesting cases. Thumbnails are shown for sample relationships that have the same ¢. See Appendix C

for a legend of the function types used.

Specifically, if #, is the maximal element of Ay (0),
then the minimal value of & at which a right-tailed test
based on ¢ will achieve power 1 — B is ® = max lg(ty),
that is, the maximal element of the (1 —28) Q-confidence
interval at #,. So if the statistic is highly equitable at
ty, then we will be able to achieve high power against
very small departures from the null hypothesis of inde-
pendence. That is, good equitability on Q implies good
power against independence on Q. This reasoning holds
for null hypotheses beyond independence, and in the con-
verse direction as well, as we state in Theorem 3.1.

3.2 An Equivalent Characterization of Equitability in
Terms of Power

To be able to state our result, we need to formally de-
scribe how equitability would be formulated in terms of

0

A2a (0){

to = max A, (0)

|

max Iog(ta)

F1G. 3. An illustration of the connection between equitability and
power. In this example, we ask for the minimal x > 0 that allows a
right-tailed level-a test based on ¢ to achieve power 1 — B in dis-
tinguishing between Hy : ® =0 and Hy : ® = x. (For simplicity, the
Q-acceptance regions and Q-confidence intervals pictured are for the
case that a = B.)

power. This requires two definitions. The first is a defi-
nition of a power function that parametrizes the space of
possible alternative hypotheses specifically by the prop-
erty of interest. The second is a definition of a property
of this power function called its uncertain interval. It will
turn out later than uncertain intervals are Q-confidence
intervals and vice versa. In the definition below, the most
permissive member of a set of right-tailed tests based
on the same statistic is the one with the smallest critical
value.

DEFINITION 3.1. Fix a,xg € [0, 1], and let 75° be
the most permissive level-« right-tailed test based on ¢ of
the (possibly composite) null hypothesis Hy : ®(Z) = xp.
For x1 € [0, 1], define

K30 (x1) = égfg P(T;°(Z) rejects),
O (2)=x

where Z is a sample of size n from Z. That is, K" (x1) is
the power of T, with respect to the composite alternative
hypothesis Hy : ® = x;.

We call the function K3 : [0, 1] — [0, 1] the level-«
power function associated to ¢ at xo with respect to .

Note that in the above definition our null and alterna-
tive hypotheses may be composite since they are based
on @ and not on a complete parametrization of Q. That
is, @ can contain several distributions with ®(Z) = xg or
®(Z) = x) respectively.

Under the assumption that ®(Z) = 0 if and only if
Z represents statistical independence, the power function
K 2 gives the power of optimal level-a right-tailed tests
based on ¢ at distinguishing various nonzero values of
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@ from statistical independence across the different re-
lationship types in Q. One way to view the main result
of this section is that the set of power functions at val-
ues of xqg besides O contains much more information than
just the power of right-tailed tests based on ¢ against the
null hypothesis of ® = 0, and that this information can be
equivalently viewed in terms of Q-confidence intervals.
Specifically, we can recover the equitability of ¢ at every
y € [0, 1] by considering its power functions at values of
xo beyond 0.

Let us now define the precise aspect of the power func-
tions associated to ¢ that will allow us to do this.

DEFINITION 3.2. The uncertain set of a power func-
tion K3 is the set {x1 > xo: K3'(x1) <1 —a}.

Our result is then that uncertain sets are Q-confidence
intervals and vice versa.

THEOREM 3.1. Fix a set Q of distributions, a func-
tion ®: @ — [0,1],and 0 < o < 1/2. Let ¢ be a statistic
with the property that max A, (x) is a strictly increasing
function of x. Then for all d > 0, the following are equiv-
alent.

1. ¢ is worst-case 1/d-equitable with respect to ® with
confidence 1 — 2.

2. Forevery xo, x1 € [0, 1] satisfying x; —xo > d, there
exists a level-a right-tailed test based on ¢ that can distin-
guish between Hy : ®(2) < xg and Hy : ®(2) > x| with
power at least 1 — «.

The proof of Theorem 3.1, which we defer to Ap-
pendix B, is similar to the well-known construction of
hypothesis tests from confidence intervals (Casella and
Berger, 2002). The main difference is that the usual con-
struction only yields guarantees about the type I error of
the resulting tests, whereas here we also provide guaran-
tees about their power on specific alternatives. This is the
reason for the monotonicity assumption in the theorem
statement.

The characterization of equitability provided by Theo-
rem 3.1 clarifies that the concept of equitability is funda-
mentally about being able to distinguish not just signal
(® > 0) from no signal (& = 0) but also stronger sig-
nal (® = x;) from weaker signal (® = xp), and being
able to do so across relationships of different types. This
makes sense when a data set contains an overwhelming
number of heterogeneous relationships that exhibit, say,
@ (Z) = 0.3 and that we would like to ignore because they
are not as interesting as the small number of relationships
with, say, ®(Z) =0.8.

Another advantage of this characterization is that it
demonstrates that equitability is related to existing statisti-
cal concepts. For instance, the estimation theory literature
describes a notion of uniform consistency of an estima-
tor (Yatracos, 1985), which is a guarantee that a statistic

not only converges to a desired population value but does
so at a rate that is uniformly bounded across all possible
distributions in the model. Equitability, by allowing for
fine-grained distinguishability between distributions with
difference values of ®, can be viewed in the asymptotic
setting as providing a guarantee that could be translated
into an “approximate” uniform consistency for estima-
tion of ® on Q. Additionally, the literature on minimax
hypothesis testing includes the notion of separation rate
(or separation radius in the nonasymptotic setting), which
is the minimal distance between two distributions under
some metric such that a level-a two-sample test is guaran-
teed a certain power at distinguishing samples drawn from
the distributions (Baraud, 2002). The focus in that set-
ting is to prove minimax separation rates for various two-
sample testing problems (Baraud, 2002, Fromont, Lerasle
and Reynaud-Bouret, 2016, Arias-Castro, Pelletier and
Saligrama, 2018). Equitability, in contrast, is motivated
by finding important relationships of all kinds in large-
scale data sets via a statistic that can usefully rank the
relationships in the data set. This requires assessing the
performance of a measure of dependence with respect
to the specific distance metric implied by a given one-
dimensional notion of relationship strength. Thus, equi-
tability is in a sense a one-dimensional analogue of sepa-
ration radius.

3.3 Quantifying Equitability via Statistical Power

Theorem 3.1 gives us an alternative to measuring equi-
tability via lengths of Q-confidence intervals. For every
xo € [0,1) and for every x; > xg, we can estimate the
power of right-tailed tests based on ¢ at distinguishing
Hpy : ® = x¢ from H; : & = xy. This process is illustrated
schematically in Figure 4. In that figure, good equitabil-
ity corresponds to high power on pairs (x1, xg) even when
X1 — xo is relatively small, and a redder triangle denotes
better equitability.

3.4 Equitability Is Stronger than Power Against
Independence

Theorem 3.1 shows that equitability is more stringent
than the conventional notion of power against indepen-
dence in three ways.

1. Instead of just one null hypothesis (i.e., Hy : ®(2) =
0), there are many possible null hypotheses Hy : (2) =
xg for different values of x.

2. Each of the new null hypotheses can be composite
since @ can contain relationships of many different types
(e.g., noisy linear, noisy sinusoidal, and noisy parabolic).
Whereas for many measures of dependence all of these
relationships may have reduced to a single null hypoth-
esis in the case of statistical independence, they often
yield composite null hypotheses once we allow @ to be
nonzero.
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FIG. 4. A schematic illustration of assessment of equitability via statistical power. (Top) The sampling distributions of a test statistic § when a
data set contains only four relationships: a parabolic and a linear relationship, each with either ® = 0.3 or ® = 0.6. The dashed line represents
the critical value of the most permissive level-o right-tailed test of Hy : ® = 0.3. (Bottom left) The power function of the most permissive level-o
right-tailed test based on a statistic ¢ of the null hypothesis Hy : ® = 0.3. The curve shows the power of the test as a function of x1, the value of
® that defines the alternative hypothesis. (Bottom middle) The power function can be depicted instead as a heat map. (Bottom right) Instead of
considering just one null hypothesis, we consider a set of null hypotheses (with corresponding critical values) of the form Hy : ® = xo and plot
each of corresponding power curve as a heat map. The result is a plot in which the intensity in the coordinate (x1, xg) corresponds to the power of
the size-a right-tailed test based on ¢ at distinguishing Hy : ® = x| from Hy : ® = xq. A statistic is 1/d-equitable with confidence 1 — 2« if this
power surface attains the value 1 — o within distance d of the diagonal along each row. The power curves and heatmap in this figure are schematic

and correspond only approximately to the hypothetical distributions shown.

3. The alternative hypotheses are also composite, since
each one similarly consists of several different relation-
ship types with the same ®. Whereas conventional anal-
ysis of power against independence considers only one
alternative at a time, here we require that tests simulta-
neously have good power on sets of alternatives with the
same P.

The understanding that equitability corresponds to
power against a much larger set of null hypotheses sug-
gests, via “no free lunch”-type considerations (Simon and
Tibshirani, 2012), that if we want to achieve higher power
against this larger set of null hypotheses, we may need to
give up some power against independence. And indeed,
in Reshef et al. (2018) we demonstrate empirically that
such a trade-off does seem to exist for several measures
of dependence. However, there are situations in which this
trade-off is worth making. For instance, in the analysis by
Heller et al. (2016) of the gene expression data set dis-
cussed earlier in this paper, as well as in a similar analysis
of a global health data set (Reshef et al., 2018), several

measures of dependence each detect thousands of signifi-
cant relationships after correction for multiple hypothesis
testing. In such settings it may be worthwhile to sacrifice
some power against independence to obtain more infor-
mation about how to choose among the large number of
relationships being detected.

4. EQUITABILITY IMPLIES LOW DETECTION
THRESHOLD

The primary motivation given for equitability is that of-
ten data sets contain so many relationships that we are not
interested in all deviations from independence but rather
only in the strongest few relationships. However, there are
many data sets in which, due to low sample size, multiple-
testing considerations, or relative lack of structure in the
data, very few relationships pass significance. Alterna-
tively, there are also settings in which equitability is too
ambitious even at large sample sizes. In such settings, we
may indeed be interested in simply detecting deviations
from independence rather than ranking them by strength.
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In this situation, there is still cause for concern about
the effect of our choice of test statistic ¢ on our results.
For instance, it is easy to imagine that, despite asymp-
totic guarantees, an independence test will suffer from low
power even on strong relationships of a certain type at a fi-
nite sample size n because the test statistic systematically
assigns lower scores to relationships of that type. To avoid
this, we might want a guarantee that, at a sample size of ,
the test has a given amount of power in detecting relation-
ships whose strength as measured by @ is above a certain
threshold, across a broad range of relationship types. This
would ensure that, even if we cannot rank relationships by
strength, we at least will not miss important relationships
as a result of the statistic we use.

There is a simple connection between equitability as de-
fined above and this desideratum, which we call low de-
tection threshold. In particular, we show via the alternate
characterization of equitability proven in the previous sec-
tion that low detection threshold is a straightforward con-
sequence of high equitability. Since the converse does not
hold, low detection threshold may be a reasonable crite-
rion to use in situations in which equitability is too much
to ask.

Given a set Q of standard relationships, and a property
of interest ®, we define detection threshold as follows.

DEFINITION 4.1 (Detection threshold). A statistic ¢
has a (1 — B)-detection threshold of d at level o with re-
spect to ® on Q if there exists a level-o right-tailed test
based on ¢ of the null hypothesis Hy : ®(Z) = 0 whose
power on H : Z at a sample size of n is at least 1 — g for
all Z € Q with ®(2) > d.

Just as equitability is analogous to the notion of sep-
aration rate in the context of minimax two-sample test-
ing, detection threshold is likewise analogous the one-
sample version of this idea, known as the testing rate.
This is the minimal distance between an alternative and
the null under some metric such that a level-o test is
guaranteed a certain power on that alternative. There is
a long and fruitful line of work proving minimax testing
rates for various hypothesis testing problems, including
nonparametric ones (Ingster, 1987, Lepski and Spokoiny,
1999, Baraud, 2002, Ingster and Suslina, 2003) and even
for independence testing (Ingster, 1989, Paninski, 2008,
Yodé, 2011, Acharya, Daskalakis and Kamath, 2015,
Zhang, 2016). However, in the context of independence
testing, testing rate is typically defined in the specific case
in which relationship strength is measured by total varia-
tion distance. For example, in (Zhang, 2016), a minimax
testing rate result is proven for the max BET test in terms
of statistical distance from independence, and the the fact
that this rate is uniformly bounded away from zero on the
family of distributions in question is referred to as uni-
form consistency of the max BET hypothesis test. Our

definition is a natural generalization of this notion that al-
lows for different instantiations to involve different quan-
tifications of relationship strength.

The connection between equitability and low detection
threshold is a straightforward corollary of Theorem 3.1.

COROLLARY 4.1. Fix some 0 < a < 1, let ¢ be
worst-case 1/d-equitable with respect to ® on Q with
confidence 1 — 2a, and assume that max A, (-) is a
strictly increasing function. Then ¢ has a (1 — «)-
detection threshold of d at level o with respect to ® on Q.

Assume that ® has the property that it is zero precisely
in cases of statistical independence. Then it is easy to see
that low detection threshold is an intermediate property
that is strictly stronger than asymptotic consistency of in-
dependence testing on Q using ¢ and strictly weaker than
equitability of ¢ on Q.

A concrete way to see the utility of low detection
threshold is to imagine that we prefilter our data set using
some independence test before conducting a more fine-
grained analysis with a second statistic. In that case, low
detection threshold ensures that we will not “throw out”
important relationships prematurely just because of their
relationship type. In Reshef et al. (2018), we propose pre-
cisely such a scheme, and we analyze the detection thresh-
old of the preliminary test in question to argue that the
scheme will perform well.

5. EXAMPLE OF QUANTIFICATION OF EQUITABILITY
IN PRACTICE

To concretize the preceding theory, we exhibit an anal-
ysis of the equitability on a set of noisy functional re-
lationships of some commonly used methods: the max-
imal information coefficient as estimated by a new esti-
mator® MIC, introduced in Reshef et al. (2016), distance
correlation (Székely, Rizzo and Bakirov, 2007, Székely
and Rizzo, 2009, Huo and Székely, 2016), and Linfoot-
transformed mutual information (Linfoot, 1957, Cover
and Thomas, 2006) as estimated using the Kraskov es-
timator (Kraskov, Stogbauer and Grassberger, 2004).

In this analysis, we use ® = R? as our property of in-
terest, n = 500 as our sample size, and

O={(x+¢e, f(x)+e,):x€Xy,
eo, b ~N(0,0%), f € F,0 € Roo),

where &, and ¢/ are i.i.d., F is the set of functions in
Appendix C, and X ¢ is the set of n x-values that result

SThe interested reader may wish to read about MIC, in the refer-
ence provided; however, MIC, is not the focus of this paper. For the
purposes of this paper it can be treated as a black box being used to
demonstrate how one would evaluate the equitability of an arbitrary
statistic.



EQUITABILITY, INTERVAL ESTIMATION AND STATISTICAL POWER 213

MIC
e

1 [ Worst Interp. = 0.342

Distance Corr.

1 [ Worst Interp. = 1.000

I [L?] (Kraskov)

1 [ Worst Interp. = 0.963

R2[f(x),y] R2 [f(x),y]

=)

10

o
o

08

o
)

06

I
~

04

Null Model R [f(x).y]

o
N

02

0 0

R?[f(x),y]

08

06

0.4

02

0

0O 02 04 06 08 10 0 02 04

Alternative Model R? [f(x),y]

Alternative Model R? [(x),y]

08 10 0 02 04 06 08 10
Alternative Model R? [f(x),y]

FIG. 5. An analysis of the equitability with respect to R? of three measures of dependence on a set of functional relationships. The set of
relationships used is described in Section 5. Each column contains results for the indicated measure of dependence. (Top) The analysis visualized
via Q-confidence intervals as in Figure 2. [Narrower is more equitable.] The worst-case and average-case widths of the 0.1 Q-confidence intervals
for the statistic in question given numerically in the top-left of each plot. (Bottom) The same analysis visualized via statistical power as in Figure 4.

[Redder is more equitable.]

in the points (x;, f(x;)) being equally spaced along the
graph of f. Results are shown in Figure 5.

We emphasize that this analysis is intended only as a
demonstrative example; for an in-depth empirical evalua-
tion of a comprehensive set of methods under many dif-
ferent settings and with randomly drawn functions, see
Reshef et al. (2016, 2018). We remark that, though equi-
tability is an approximate quantity, improving the equi-
tability of existing methods is a worthwhile goal; to that
end, exploration of why current methods fail to achieve
perfect equitability, say, with respect to R? is a valuable
avenue of future work.

6. CONCLUSION

In this paper, we formalized and developed the theory
of equitability in three ways. We first defined the equi-
tability of a statistic as a uniform bound on the length of
a certain set of interval estimates of relationship strength
constructed using that statistic; under this view, equitabil-
ity amounts to an application of ideas from statistical de-
cision theory to assess the extent to which a measure of
dependence can be used to perform conservative semi-
parametric inference based on extremum quantities. Sec-
ond, we showed that this formalization of equitability
can be equivalently stated in terms of power to distin-
guish different degrees of (possibly nontrivial) relation-
ship strength from each other; this stands in contrast to

the way that measures of dependence have conventionally
been judged, which is only by their power at distinguish-
ing nontrivial signal from statistical independence. Third,
we showed that equitability implies the strictly weaker
property of a statistic yielding independence tests with a
guaranteed minimal power to detect relationships whose
strength passes a certain threshold, across a range of rela-
tionship types. This property, which we call low detection
threshold in the context of measures of dependence, is a
natural weaker criterion that one could aim for when eq-
uitability proves difficult to achieve.

Our formalization and its results serve three primary
purposes. The first is to provide a framework for rigor-
ous discussion and exploration of equitability and related
concepts. The second is to clarify the relationship of eq-
uitability to central statistical concepts such as confidence
and statistical power. The third is to show that equitability
and the language developed around it can help us to both
formulate and achieve other useful desiderata for mea-
sures of dependence.

These connections provide a framework for thinking
about the utility of both current and future measure of
dependence for exploratory data analysis. Power against
independence, the lens through which measures of depen-
dence are currently most often evaluated, is appropriate in
many settings in which very few significant relationships
are expected, or in which we want to know whether one
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specific relationship is nontrivial or not. However, in sit-
uations in which most measures of dependence already
identify a large number of relationships, a rigorous theory
of equitability will allow us to begin to assess when we
can glean more information from a given measure of de-
pendence than just the binary result of an independence
test.

6.1 Future Work

There is much left to understand about equitability. For
instance, to what extent is it achievable for different prop-
erties of interest? What are natural and useful properties
of interest for sets @ besides noisy functional relation-
ships? For common statistics, can we obtain a theoretical
characterization of the sets @ and properties ® for which
those statistics achieve good equitability? Are there sys-
tematic ways of obtaining equitable behavior via a learn-
ing framework as has been done, for example, for causa-
tion in Lopez-Paz et al. (2015)? These questions all de-
serve attention.

Equitability as framed here is certainly not the only goal
to which we should strive in developing new measures of
dependence. As data sets not only grow in size but also
become more varied, there will undoubtedly develop new
and interesting use-cases for measures of dependence that
will come with new ways of assessing success. Notwith-
standing which particular modes of assessment are used,
it is important that we formulate and explore concepts that
are stronger than power against independence, at least in
the bivariate setting. Equitability provides one approach
to coping with the changing nature of data exploration.
But more generally we can and should ask more of mea-
sures of dependence, and this is only one of many possi-
bilities for doing so.

APPENDIX A: NONSTOCHASTIC DEFINITION OF
EQUITABILITY

The concepts of Q-acceptance region and Q-
confidence interval can be defined in the large-sample
limit as follows.

DEFINITION A.1 (Q-acceptance region in the large-
sample limit). Let ¢ : @ — [0, 1] be a functional. For
x € [0, 1], the Q-acceptance region of ¢ at x, denoted
by A(x), is the smallest closed interval containing the set

(@1 ({x})).

DEFINITION A.2 (Q-confidence interval in the large-
sample limit). Let ¢ : @ — [0, 1] be a functional. For
y € [0, 1], the Q-confidence interval of ¢ at y, denoted
by I(y), is the smallest closed interval containing the set
{x:ye Ax)}.

Equitability is then straightforward to define in the
large-sample limit as well.

DEFINITION A.3 (Equitability in the large-sample
limit). For 0 < d < 1, the functional ¢ is worst-case
1/d-equitable with respect to @ on Q if and only if the
width of 1 (y) is at most d for all y.

This definition of equitability quantifies the degree of
nonidentifiability induced by ¢ with respect to ® on Z
independently of any finite-sample effects.

As mentioned in Section 2, the case of d = 0 is referred
to as perfect equitability. One special case of perfect eq-
uitability is when Q is the set of all bivariate Gaussians
and @ is the squared correlation. In this case, perfect equi-
tability reduces to one of Renyi’s fundamental properties
of measures of dependence. One trivial way to achieve
perfect equitability is to set ® to be the population value
of ¢. However, this is not the typical case in which equi-
tability is discussed, as equitability is strictly weaker than
consistency of an estimator; see Section 2.6 for details.

APPENDIX B: SUPPLEMENTARY PROOFS
B.1 Proof of Theorem 3.1

Our proof of the alternate characterization of equitabil-
ity in terms of power requires two short lemmas. The first
shows a connection between the maximum element of a
Q-acceptance region and the minimal element of a Q-
confidence interval, namely that these two operations are
inverses of each other.

LEMMA B.1. Given a statistic ¢, a property of inter-
est ®, and some o € [0, 1], define f(x) =max Ay (x) and
g(y) =min 1, (y). If f is strictly increasing, then f and
g are inverses of each other.

PROOF. Let y = f(x) = max Ay (x). By definition,
y € Ag(x), and so x € I,(y), which means that
min I, (y) < x. On the other hand, for all x” < x, A, (x') <
Ay(x) = y by assumption, and so y ¢ Ay(x"), which
means x’ ¢ I,(y). O

The second lemma gives the connection between Q-
acceptance regions and hypothesis testing that we will ex-
ploit in our proof.

LEMMA B.2. Fix a statistic ¢, a property of inter-
est ©, and some «, xo € [0, 1]. The most permissive level-
(ae/2) right-tailed test based on ¢ of the null hypothesis
Hy : ©(2) = x0 has critical value max Ay (x0).

PROOF. We seek the smallest critical value that yields
a level-(a/2) test. This would be the supremum, over all
Z with ®(Z) = xq, of the (1 — «/2) - 100% value of the
sampling distribution of ¢ when applied to Z. By defini-
tion this is max A, (xg). O

Theorem 3.1 can then be seen to follow from the propo-
sition below.
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F1G. 6. The relationship between equitability and power, as in
Proposition B.1. The top plot is the same as the one in Figure 1(a), with
the indicated interval denoting the Q-confidence interval 1 (y). The
bottom plot is a plot of the power function Kzoz(x), with the y-axis in-
dicating statistical power. (Notice that because the null and alternative
hypotheses are composite, Kg(}z (xg) need not equal o /2; in general it
may be lower.)

PROPOSITION B.1. Fix 0 < a < 1, and suppose § is
a statistic with the property that max Ay (x) is a strictly
increasing function of x. Then for y € [0, 1], the inter-
val 1,(y) equals the closure of the uncertain set of K;;‘)z
for xo = min 1, (y). Equivalently, for xo € [0, 1], the clo-
sure of the uncertain set of Kz(/)z equals 1,(y) for y =
max Aq (x0).

An illustration of this proposition and its proof is shown
in Figure 6.

PROOF OF PROPOSITION B.1. The equivalence of
the two statements follows from Lemma B.1, which states
that y = max Ay (xo) if and only if xg = min /I, (y). We
therefore prove only the first statement, namely that 7, (y)
is the uncertain set of K(f/)Z for xo = min I (y).

Let U be the uncertain set of K;“/’z. We prove the claim
by showing first that infU = min /,(y), and then that
supU =max I, (y).

To see that inf U = min I, (y), we simply observe that
because «/2 < 1/2, we have K;C?z(xo) <a/2<1-—a/2,
which means that U is nonempty, and so by construc-
tion its infimum is xp, which we have assumed equals
min 1, (y).

Let us now show that sup U > max I (y): by the defini-
tion of the Q-confidence interval, we can find x arbitrarily
close to max I, (y) from below such that y € A, (x). But
this means that there exists some Z with ®(Z) = x such
that if Z is a sample of size n from Z then

P(G(Z) <y) = %

that is,

o
P(o(Z)=y)<1— 5
But since as we already noted y = max Ay (xg), Lem-
ma B.2 tells us that it is the critical value of the most per-
missive level-(«/2) right-tailed test of Hy : ®(2Z) = xp.
Therefore, K;(/)z(x) <1 —a/2, meaning that x € U.

It remains only to show that supU < max [,(y). To
do so, we note that y ¢ A,(x) for all x > max I,(y).
This implies that either y > max A, (x) or y < min Ay (x).
However, since y € Ay (xg) and max Ay () is an increas-
ing function, no x > xo can have y > max A, (x). Thus,
the only option remaining is that y < min Ay (x). This
means that if Z is a sample of size n from any Z with
®(Z) = x > max [,(y), then

P(p(2) <y) < %

that is,

. o

P((P(Z) > y) >1- 5
As above, this implies that K;%(x) > 1 — «/2, which
means that x ¢ U, as desired. [J

APPENDIX C: DETAILS OF EMPIRICAL ANALYSES
C.1 Example Quantification of Equitability in Figure 2

To evaluate the equitability of p in this context, we gen-
erate, for each function f € F and for 41 noise levels
chosen for each function to correspond to R? values uni-
formly spaced in [0, 1], 500 independent samples of size
n = 500 from the relationship Z¢, = (X, f(X) + e).
We then evaluate p on each sample to estimate the S5th and
95th percentiles of the sampling distribution of p on Z 7.
By taking, for each o, the maximal 95th percentile value
and the minimal 5th percentile value across all f € F, we
obtain estimates of the level-0.1 Q-acceptance region at
each noise level. From the Q-acceptance regions we can
then construct @-confidence intervals, and the equitabil-
ity of p is the reciprocal of the length of the largest of
those intervals.

C.2 Functions Analysed in Figures 2 and 5

Below is the legend showing which function types cor-
respond to the colors in each of Figures 2 and 5. The func-
tions used are the same as the ones in the equitability anal-
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yses of Reshef et al. (2018).

[ Cosine, High Freq

[ Cosine, Non-Fourier Freq [Low]
[ Cosine, Varying Freq [Medium]
[ cubic

[ Cubic, Y-Stretched

] Exponential [2*]

[JLine

[ Linear+Periodic, High Freq
[ Linear+Periodic, High Freq 2
[ Linear+Periodic, Low Freq
[ Linear+Periodic, Medium Freq

[ Parabola

[ sSine, High Freq

[ sine, Low Freq

[ sine, Non-Fourier Freq [Low]
[ Sine, Varying Freq [Medium]

The legend for Figures 2 and 5.
C.3 Parameters Used in Figure 5

In the analysis of the equitability of MIC,, distance cor-
relation, and mutual information, the following parameter
choices were made: for MIC,, « = 0.8 and ¢ = 5 were
used; for distance correlation no parameter is required;
and for mutual information estimation via the Kraskov
estimator, k = 6 was used. The parameters chosen were
the ones that maximize overall equitability in the detailed
analyses performed in Reshef et al. (2018). For mutual
information, the choice of kK = 6 (out of the parameters
tested: k =1, 6, 10, 20) also maximizes equitability on the
specific set Q that is analyzed in Figure 5.
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